top>>問題の解説 >>ダイヤグラム2 1解説
Mathematics Website
menu

ダイヤグラム2 1解説

xはいつからの時間か? yはどこからの距離か?
ダイヤグラムでは直線の傾きは速さ
基準の地点から離れて行く時は傾きはプラス、逆に近づいてくるときはマイナス
すれ違う、出会う、追い抜かれる点は直線の交点

1. グラフはA駅とB駅の間の列車の運行を表すダイヤグラムである。
10:00からx分後のA駅からの道のりをymとしてある。列車は常に一定の速さだとする。
10:00にB駅を出た列車は10:20にA駅に着き、すぐ折り返してB駅に10:40に着く。
太郎君が10:04にA駅を出て線路沿いの道をA駅からB駅に向かって分速200mの自転車で走る。
途中B駅からくる列車と10:16にすれ違い、そのあとA駅で折り返してきた列車に追い抜かれた。
A駅 B駅 0 10 20 30 40 50 (分) x y
(1)太郎君の式を出す。
① 太郎君のグラフの傾きはいくつか。
② 「太郎君がA駅を10:04に出発した」このときのxとyを求めよ。
③ 太郎君の式を求めよ。

(2) 太郎君が列車(B駅10:00発)とすれ違ったのはA駅から何mか。
(3) 列車(B駅10:00発)の式を求める。
① この列車のグラフが通る座標を2つ求めよ。
② この列車の式を求めよ。

(4) 列車(A駅10:20発)の式を求める。
① この列車のグラフの傾きと、座標を1つ求めよ。
② この列車の式を求めよ。

(5) 太郎君が列車(A駅10:20発)に追い抜かれた時刻を求めよ。
(6) A駅からB駅までは何mか。

(1)
  ① 分速200mで基準のA駅から離れるので 傾きは200
② 時間の基準が10:00なのでx=4, 道のりの基準がA駅なのでy=0
③ 傾き200で(4,0)を通る直線の式を求めると y=200x-800

(2)
 太郎君は10:16にB駅からくる列車のすれ違っているので
(1)でだした太郎くんの式にx=16を代入する。
y=200×16-800 =2400

(3)
  ① グラフからわかる唯一の点(20,0),
(2)で出した太郎くんとすれ違う点(16, 2400)
② (20,0)と(16, 2400)の2点を通る直線の式を求めると
y =-600x+12000

(4)
  ① (3)で出した式から列車の速さは毎分600m
列車は常に一定の速さなのでA駅発の速さも同じ。
ところがA駅から離れていく場合傾きはプラスなので 600
またグラフから(20,0)を通ることがわかる。
② 傾き600で(20,0)を通る直線の式を求めると
y=600x-12000

(5)
  追いぬかれた点は太郎君のグラフとA駅発の列車のグラフの交点。
よって式を連立させて解く
{y=200x-800y=600x-12000
これを解くと x=28, y=4800
追いぬかれた時刻は10:28

(6)
  A駅からB駅までの道のりは
B駅発の列車のx=0のときのy
またはA駅発の列車のx=40のときのy
どちらでも同じ値になるはずである。
y=-600x+12000にx=0を代入するとy=12000
答12000m

分野別 目次

1年

正負の数

文字式

方程式

関数

平面図形

空間図形

資料の整理

まとめ

まとめ

2年

式の計算

連立方程式

1次関数

角度

三角形

四角形

確率

3年

多項式

平方根

2次方程式

関数

相似

三平方の定理

まとめ

Topサイトマップ更新履歴このサイトについて
Copyright (C) 2006-2017 SyuwaGakuin All Rights Reserved