top>>問題の解説 >>放物線と面積 4解説
Mathematics Website
menu

放物線と面積 4解説

4. 放物線m上に点A(4,8)がある。点Aからy軸、x軸にそれぞ
れ垂線を引き、交点をB,Cとする。放物線m上に点Pをとり、
△ABP:△ACP=7:6となるときの点Pの座標を求めよ。ただ
し、Pのx座標は0<x<4とする。
A B C O x y m

点A(4,8)が放物線上にあるのでy=ax2に代入してa=12
つまり放物線はy=12x2となる。
求める点Pのx座標をtとすると、放物線の式に代入して
y=12t2
Pの座標は(t, 12t2)とあらわる。
△ABPの面積は、底辺ABが4, 高さは(8-12t2)なので
面積=4×(8-12t2)÷2=16-t2
△ACPの面積は、底辺ACが8, 高さは(4-t)なので、
面積=8×(4-t)÷2=16-4t
これらが7:6の比になるので, (16-t2):(16-4t)=7:6
6(16-t2)=7(16-4t)
96-6t2=112-28t
6t2-28t+16=0
3t2-14t+8=0
これを解くとx=4, 23
0<x<4なのでx=23
放物線の式に代入するとy=29 となる。
A B C O x y m P (4,8)

Topサイトマップ更新履歴このサイトについて
Copyright (C) 2006-2017 SyuwaGakuin All Rights Reserved