top>>問題の解説 >>空間図形(発展)  解説
Mathematics Website
menu

空間図形(発展)  解説

1. 図は一辺12㎝の立方体である。AP=3㎝、BQ=7㎝とする。
D,P,Qを通る平面でこの立方体を切ったときの切り口をDPQSとする。
ABCDEFGHPQS
(1) CSの長さを求めよ。
(2) 切断してできる立体のうち頂点Bを含む方の立体の体積を求めよ。

(1)
J 立体を平面で切断した場合、対面に現れる直線は平行になる。
この場合 PQ//DS, PD//QSである。
図のようにPからABに平行に線を引いて△PJQをつくると
△PJQは△DCSと全く同じ三角形(合同)になる。よってAP=BJ,JQ=CS
AP=3cm,BQ=7cmなのでCSは、7-3=4
答4cm

(2)
ABCDPQS図2 切断してできる立体のうちBを含むほうは図2のようになる。
このままでは体積を出すことができないのでさらに切断する。

図3 図3のように点D, B, Qを含む平面で切断する。
すると2つの四角錐ができる。
1つはDを頂点として台形APQBが底面となっている。
台形APQBはAP=3, BQ=7, AB=12なので
 面積 (3+7)×12÷2 =60
四角錐の高さAD=12なので
 体積 60×12÷3=240
もう1つはDを頂点として台形BQSCが底面となっている。
台形BQSCはCS=4, BQ=7, BC=12なので
 面積 (4+7)×12÷2=66
四角錐の高さDC=12なので
 体積 66×12÷3=264
これら2つの体積を足すと 240+264=504
答504cm3

2.  図のような1辺6cmの立方体がある。ACとBDの交点をO,
辺EF,FG,GH,HE,の中点をそれぞれP,Q,R,Sとする。
このとき四角錐OPQRSの体積を求めよ。
ABCDEFGHPQRSO

四角錐OPQRSの高さは立方体と同じ6cmである。
EFGHPQRS6cm6cm3cm3cm 底面PQRSは図のようになるので、
面積は正方形EFGHから三角形を4つ引けば良い。
6×6-3×3÷2×4=36-18=18
体積 18×6÷3=36

3. 図1のように底面がDE=EF=12cmの直角二等辺三角形で高さが6cmの三角柱の容器に水をいれる。それを静かに傾けて水をこぼしていき図2のように水面が3点B,C,Dを通る状態でとめた。このとき容器に入っている水は何cm3か求めよ。 図1ABCDEF図2ABCD EF

柱の体積 = 底面積×高さ
錐の体積 = 底面積×高さ÷3
体積を求める場合 
まず求める立体の形を見極める ・・・柱か、錐か、またはそれらの組み合わせか

錐の高さは頂点から底面におろした垂線の長さである。
図のD-BEFCは底面が長方形BEFCの四角錐である。
DE⊥BE,DE⊥EFなのでDEがこの四角錐の高さとなる。
よって
底面の面積 12×6=72
高さ 12
四角錐の体積 72×12÷3=288

4.  図の四角錐は側面が1辺6cmの正三角形になっている。点Pから側面を通り点Qまで行くときの 最短の道のりを求めよ。ただしCP=4㎝、AQ=2㎝である。 A B C D E P Q

立体側面を通る最短の道のりを求めるには
展開図を描いて、直線を引く。
展開図のうち、△ABCと△ACDの部分だけ描くと図のようになる。
AB C D P Q 6cm 4cm 2cm AQ=2cm, PD=2cmなので四角形AQPDは平行四辺形になり、PQ=DAである。
よってPQ=6cm


>> 5番の解説

分野別 目次

1年

正負の数

文字式

方程式

関数

平面図形

空間図形

資料の整理

まとめ

まとめ

2年

式の計算

連立方程式

1次関数

角度

三角形

四角形

確率

3年

多項式

平方根

2次方程式

関数

相似

三平方の定理

まとめ

Topサイトマップ更新履歴このサイトについて
Copyright (C) 2006-2017 SyuwaGakuin All Rights Reserved