top>>問題の解説 >>素因数分解 4解説
Mathematics Website
menu

素因数分解 4解説

平方(2乗)とは 同じ数を2回かけること
144 = 12×12 = 122 なので 144は12の平方である。

4
(1) 294 に出来るだけ小さい自然数をかけて、その結果をある整数の平方にしたい。 何をかければよいか。またその結果は何の平方になるか。求めよ。
(2) 108 に自然数をかけて、その結果を整数の平方にしたい。
  このときかける数を小さいほうから 3 つ求めよ。

解説
(1)  294を素因数分解する。
294=2×3×72となるので
(2×3×7)×(□×7)これが2乗になるためには左右のカッコの中が同じになれば良い。
そのために□に入る数字は2×3=6である。
すると(2×3×7)×(2×3×7)=422となる。

(2)  108を素因数分解する。
108=22×33となるので
108 = (2×3×3)×(2×3) これになにか数字をかけて平方を作る。
(2×3×3)×(2×3×□) このとき□に3が入れば左右のカッコが同じになる
つまり108になにかかけて平方を作るための最小の数は3となる。
さらに大きい数字をかけて平方を作るには
(2×3×3×△)×(2×3×3×△)  △に同じ数が入れば平方になる。
△に2をいれると、108にかける数は3×2×2=12
次に小さい数の3をいれると 108にかける数は3×3×3=27
よって108に自然数をかけてその結果が整数の平方になるのは
小さい方から3, 12, 27である。

分野別 目次

1年

正負の数

文字式

方程式

関数

平面図形

空間図形

資料の整理

まとめ

まとめ

2年

式の計算

連立方程式

1次関数

角度

三角形

四角形

確率

3年

多項式

平方根

2次方程式

関数

相似

三平方の定理

まとめ

Topサイトマップ更新履歴このサイトについて
Copyright (C) 2006-2017 SyuwaGakuin All Rights Reserved