(3)
図は縦12㎝、横6㎝の長方形である。点Pは頂点Aを出発して毎秒2㎝で
Bまで動き、点QはAと同時に頂点Dを出発し毎秒1㎝でAまで動く。
Pから辺BCに平行な直線を引き辺CDとの交点をRとする。
台形PRDQの面積が16cm2になるのは出発してから何秒後か。
Pは毎秒2cmで動くのでx秒で2xcm動く。
つまりAP=2xとなり、これが台形の高さである。
Qは毎秒1cmなのでx秒でxcm動く。
つまりQD=xで、これが台形の上底となる。
下底PRはBCと同じ長さなのでPR=6cm
(上底+下底)×高さ÷2=台形の面積 にあてはめると
(x+6)×2x÷2=16
(x+6)x =16
x2+6x-16=0
(x-2)(x+8)=0
x=2, x=-8
x>0よりx=2 よって 答2秒後