3(6)
関数y=ax2で、xの変域が-5≦x≦6のときのyの変域が-63≦y≦bだった。a,bの値をそれぞれ求めよ。
yの変域が負にあるので,a<0である。
a<0のy=ax2の放物線を-5≦x≦6の範囲でグラフに表すと図のようになる。
xの変域が負から正まであり、グラフに原点が含まれるので,原点のy=0がyの最大値である。
よってb=0
xの両端のうち絶対値の大きい方のx=6のときに
yは最小値をとるので,x=6のときy=-63である。
これを y=ax2に代入すると
-63 = a×62
a = - 74