放物線と直線の変域が一致するLv2 (3)

(3)
放物線y=ax2とm<0の直線y=mx+8について-2≦x≦4でyの変域が一致する。
aとmの値をそれぞれ求めよ。

-2≦x≦4の範囲でグラフが正の部分にある。
放物線y=ax2は,これと変域が一致するのでa>0である。
-2≦x≦4の範囲で放物線をかくと図のようになり
x=4で最大値y=16a,
x=0で最小値y=0である。
-24Oxy16a
これと変域が一致するように傾きが負の直線y=mx+8をかくと
2点(4,0),(-2,16a)を通ることがわかる
-24Oxy16a

y=mx+8に(4,0)を代入すると
0=4m+8
m=-2

y=-2x+8に(-2,16a)を代入すると
16a=-2×(-2)+8
16a=12
a=34

学習 コンテンツ

練習問題 各単元の要点 pcスマホ問題 数学の例題

学習アプリ

方程式文章題アプリ中1 方程式 文章題アプリ
中1数学の方程式文章題を例題と練習問題で徹底的に練習

© 2006- 2024 SyuwaGakuin All Rights Reserved