(1) 放物線y=ax2と直線m<0のy=mx+18について-6≦x≦4でyの変域が一致する。 aとmの値をそれぞれ求めよ。
直線の切片が18なので,-6≦x≦4の範囲でグラフの最大値は18より大きくなる。
よって,a>0とわかる。
-6≦x≦4で a>0の放物線をかくと図のようになる。
図より,放物線の最小値はy=0,
最大値はx=-6のときのyの値なので
y= a×(-6)2 = 36a である。
直線は傾きが負なので,xが大きくなるほどyが小さくなる。
よって x=4のときy=0, x=-6のときy=36aである。
y = mx+18にx=4,y=0を代入すると
0 = 4m+18
m = -92
y = -92x+18にx=-6,y=36aを代入すると
36a = -92×(-6)+18
36a = 45
a = 54