2
∠BCD=90°で、BDは∠ADCの二等分線である。点AからBDに垂線を引き、その交点をEとする。BD=ADのとき△BCD≡△AEDを証明せよ。
仮定を図に1つずつ描き入れる。
∠BCD=90°
BDは∠ADCの二等分線
AEとBDが垂直
BD=AD
2つの三角形BCDとAEDを向きをそろえて並べると
両方とも直角三角形となり,斜辺が等しく,鋭角も1つ等しくなる。
等しい辺や角を式にして理由をつければ証明となる。
△BCD と△AED において
BD=AD(仮定)
∠BCD=∠AED=90°(仮定)
∠BDC=∠ADE(角の二等分線)
よって直角三角形の斜辺と 1 つの鋭角がそれぞれ等しいので△BCD≡△AED