top>>問題の解説 >>平行四辺形の性質1  (4)解説
Mathematics Website
menu

平行四辺形の性質1  (4)解説

(4) ABCDの∠BADと∠CDAのそれぞれの二等分線の交点をEとする。このとき∠AEDは何度になるか求めよ。 A B C D E

AEは∠BADの二等分線なので∠BAE=∠DAE=aとする。
平行四辺形の対角は等しいので∠BAD=∠BCD=2aとなる。
DEは∠CDAの二等分線なので∠CDE=∠ADE=bとする。
平行四辺形の対角は等しいので∠CDA=∠CBA=2bとなる。
ABCDの4つの内角を足すと
2a+2a+2b+2b=4a+4b
四角形の内角の和は360°なので4a+4b=360°
a+b=90°
三角形の内角の和は180°なので
△AEDにおいて∠AED+a+b=180°
a+b=90°なので
∠AED+90°=180°
∠AED=90°
A B C D Ea a b b 2a 2b

分野別 目次

1年

正負の数

文字式

方程式

関数

平面図形

空間図形

資料の整理

まとめ

まとめ

2年

式の計算

連立方程式

1次関数

角度

三角形

四角形

確率

3年

多項式

平方根

2次方程式

関数

相似

三平方の定理

まとめ

iphone用
android用
iphone用
android用
iphone用
アンドロイド用
iphone用
アンドロイド用
iphone用
アンドロイド用
iphone用
アンドロイド用
iphone用
アンドロイド用
iphone用
アンドロイド用
iphone用
アンドロイド用
iphone用 iphone用
アンドロイド用
Topサイトマップ更新履歴このサイトについて
Copyright (C) 2006-2017 SyuwaGakuin All Rights Reserved