2.
長方形ABCDを、対角線ACを折り目として折り返す。
Dが移る点をE, ABとECの交点をFとする。
AF=CFとなることを証明せよ。
対角線ACを折り目にして折り返した図である。
図の△ACDが折り返されて△ACEとなっている。
∠ACDを折り返したのが∠ACEなので,当然∠ACD=∠ACEである。
また,ABとCDは平行なので,
平行線の錯角は等しいので∠CAF=∠ACD
すると ∠ACE(∠ACF)と∠ACDと∠CAFは,
みんな同じ大きさの角なので
∠ACF=∠CAF より
2角が等しいので△AFCは
∠ACFと∠CAFを底角とする二等辺三角形になる。
よってAF=CFである。
【証明】
△AFCにおいて
∠FAC=∠DCA(平行線の錯角)
∠FCA=∠DCA(折り返した角)
よって∠FAC=∠FCA
2角が等しいので△FACは二等辺三角形である。
よってAF=CF