3
放物線mは
y= -
1
4
x2
のグラフで、放物線nはy=-x2の
グラフである。放物線mと直線y=-1との交点をA,Dとし、
放物線nと直線y=-9との交点をB,Cとする。
点Aを通り台形ABCDの面積を2等分する直線の式を求めよ。
台形の面積を求めてから、それの半分の面積の三角形を作るように直線を引く。
A,B,C,Dの座標を求める。
y= −
1
4
x2にy=-1を代入すると
-1=−
1
4
x2
x=±2
A(-2,-1), D(2,-1)
y=-x2にy=-9を代入して
-9=-x2
x=±3
B(-3,-9),C(3,-9)
台形ABCDの面積を求める。
AD=2-(-2)=4・・・上底
BC=3-(-3)=6・・・下底
-1-(-9)=8・・・高さ
面積=(4+6)×8÷2=40
台形ABCDの面積を2等分する直線とBCとの交点をPとすると
△ABPの高さは台形ABCDと同じ8で面積は半分の20
BPの長さをdとして面積を求める方程式を作ると
d×8÷2=20
これを解いてd=5
Bのx座標が-3なのでPのx座標は2
つまりP(2,-9)
A(-2,-1)とP(2,-9)を通る直線を求めると
y=-2x-5