top>>問題の解説 >>空間図形(発展) 3 解説
Mathematics Website
menu

空間図形(発展) 3 解説

柱の体積 = 底面積×高さ
錐の体積 = 底面積×高さ÷3
体積を求める場合 
まず求める立体の形を見極める ・・・柱か、錐か、またはそれらの組み合わせか


3. 図1のように底面がDE=EF=12cmの直角二等辺三角形で高さが6cmの三角柱の容器に水をいれる。それを静かに傾けて水をこぼしていき図2のように水面が3点B,C,Dを通る状態でとめた。このとき容器に入っている水は何cm3か求めよ。
図1 A B C D E F 図2 A B C D E F

錐の高さは頂点から底面におろした垂線の長さである。
図のD-BEFCは底面が長方形BEFCの四角錐である。
DE⊥BE,DE⊥EFなのでDEがこの四角錐の高さとなる。
よって
底面の面積 12×6=72
高さ 12
四角錐の体積 72×12÷3=288

分野別 目次

1年

正負の数

文字式

方程式

関数

平面図形

空間図形

資料の整理

まとめ

まとめ

2年

式の計算

連立方程式

1次関数

角度

三角形

四角形

確率

3年

多項式

平方根

2次方程式

関数

相似

三平方の定理

まとめ

iphone用
アンドロイド用
iphone用
アンドロイド用
iphone用
アンドロイド用
iphone用
アンドロイド用
iphone用
アンドロイド用
iphone用 iphone用
アンドロイド用
Topサイトマップ更新履歴このサイトについて
Copyright (C) 2006-2017 SyuwaGakuin All Rights Reserved