面積比 4解説

4. 図でAP:BP=2:1, BQ:QC=3:1, AR:RC=1:4である。
(1) △ABC:△APRの面積比を求めよ。 (2) △ABC:△BPQの面積比を求めよ。 (3) △ABC:△PQRの面積比を求めよ。
A B C P Q R

(1) △ABC:△APRの面積比
PCに補助線を引く。
AR:RC=1:4より面積比 △APR:△RPC=1:4
AP:PB=2:1より面積比 △APC:△PBC=2:1
△APR=1とすると△RPC=4,△APC=5となるので
△APC:△PBC=2:1より
5:△PBC=2:1
△PBC=2.5
よって、
△APRの面積を1としたときの比は1:4:2.5である。
図2より △ABC=1+4+2.5=7.5なので
△ABC:△APR=7.5:1=15:2
ABCPQR図11214
ABCPQR図22.514


(2) △ABC:△BPQの面積比
AQに補助線を引く。
AP:PB=2:1より△APQ:△BPQ=2:1
BQ:QC=3:1より△ABQ:△AQC=3:1
△BPQ=1とすると△APQ=2, △ABQ=3, △AQC=1となる。
よって△ABC= 1+2+1=4
△ABC:△BPQ=4:1
ABCPQR1213図3
ABCPQR図4121


(3) まず△ABC:△RQCの面積比を求める。
BRに補助線を引く。
BQ:QC=3:1より△RBQ:△RQC=3:1
AR:RC=1:4より△ABR:△RBC=1:4
△RQC=1とすると、△RBQ=3, △RBC=4,△ABR=1
よって△ABC=1+3+1=5
△ABC:△RQC=5:1
ABCPQR図51341

△ABC:△PQRの面積比
(1)より△ABC:△APR=15:2
(2)より△ABC:△BPQ=4:1
ここで△ABCを基準にするため△ABC=60とすると
△ABC:△RQC=5:1=60:12
△ABC:△APR=15:2 = 60:8
△ABC:△BPQ=4:1 = 60:15
△PQR=△ABC-(△APR+△PBQ+△RQC)
△PQR=60-(8+15+12)=25
よって△ABC:△PQR=60:25=12:5
ABCPQR△ABC=608121560-(8+12+15)=25

学習 コンテンツ

練習問題 各単元の要点 pcスマホ問題 数学の例題

学習アプリ

方程式文章題アプリ中1 方程式 文章題アプリ
中1数学の方程式文章題を例題と練習問題で徹底的に練習

© 2006- 2024 SyuwaGakuin All Rights Reserved