top>>問題の解説 >>三平方 折り返し(4)
Mathematics Website
menu

三平方 折り返し(4)

(4)  正方形ABCDの辺AB上にBE=5cmとなるような
点Eをとる。頂点CがEに重なるように
折り返す。頂点Dが移る点がF, 折り目が
HIである。FHの長さを求めよ。
A B C D E F G H I 5cm 25cm 25cm

この問題は、相似と三平方の組合せである。
求めるFHを含む三角形の△GFHと相似な三角形を見つける
まず、△GFH∽△GAE (理由:∠GFH=∠GAE=90°、∠FGH=∠AGE 対頂角)
さらに△GAE∽△EBI
(理由:∠GAE=∠EBI=90°、∠AEG+∠BEI=90°で∠BIE+∠BEI=90°より∠AEG=∠BIE)
そして△EBIについて
折り返しているのでIC=IEである。IC=IE=yとすると
BI=25-yとなるので、三平方の定理を使うとyが出せる。
52 + (25-y)2 = y2
この方程式を解くとy=13
つまり、EI=13, BI = 12である。
△GAE∽△EBIの関係からAG, EGを出す。
AB=25、EB=5より AE=20である。

GEと対応するのはEIなので
GE:13 = 20:12
GE = 653
GAとEBが対応するので
GA:5 = 20:12
GA = 253
E A B I E G 5cm 13cm 12cm 20cm

続いて△GFH∽△GAEの関係からFHを出す。
EF=25, GE =653より
GF = 25- 653=103
FHと対応するのはAEなので
FH:20 = 103 : 253
FH =8
A E G G F H 10 3 cm ─ cm ─ cm 20cm 3 3 65 25

学習 コンテンツ

練習問題 各単元の要点 pcスマホ問題 数学の例題

目次

 
© 2006- 2018 SyuwaGakuin All Rights Reserved