Mathematics Website

式の計算 総合問題1 5

5.  5つの連続した偶数の和は10の倍数になることを説明せよ。

式による説明は3つの部分でできている。
1つ目は文字で表す。 2つ目は計算。 3つ目は結論

5つの連続した偶数 の和は 10の倍数になる。 └───────┘ └──┘ └─────┘ A B C
Aの部分を文字で表し、計算はB(和)を行い、最後に計算の結果がC(結論)となることを説明する。
Aを文字で表す
偶数とは2の倍数のことなので 「2×整数」になる。
つまり, 整数=n とすると 2n と表すことができる。
また, 連続する偶数は 2, 4, 6, 8・・・のように2つずつ増えていく。
よって 2nのとなりの偶数は 2n+2, そのとなりは2n+4である。
逆に小さい方のとなりは 2n-2, そのとなりは2n-4である。
すると, 5つの連続する偶数は、nを整数として,中央の偶数が2nとすると
2n-4, 2n-2, 2n, 2n+2, 2n+4と表せる。

上で作った文字式の和を計算する
  (2n-4)+(2n-2)+2n+(2n+2)+(2n+4) = 10n
計算の結果がC(結論)となっていることを説明。
nが整数なので10nは10×整数となり10の倍数である。
よって5つの連続した偶数の和は10の倍数となる。


【説明】
nを整数とすると偶数は2nと表せる。この2nを真ん中の数とすると5つの連続した偶数は
2n-4, 2n-2, 2n, 2n+2, 2n+4となる。
これらの和は (2n-4)+(2n-2)+(2n)+(2n+2)+(2n+4) = 10n
nは整数なので10nは10の倍数である。
よって5つの連続した偶数の和は10の倍数になる

学習 コンテンツ

練習問題 各単元の要点 pcスマホ問題 数学の例題

学習アプリ

中1 計算問題アプリ 方程式
中1数学の方程式の計算問題を徹底的に練習

© 2006- 2021 SyuwaGakuin All Rights Reserved