3. 図で AD=DE=EB, AF=FG=GC となっている。
四角形DEGFの面積が24cm2のとき
△ADFの面積、四角形EBCGの面積を
それぞれ求めよ。
相似な図形の面積比
相似比がa:bのとき面積比はa2:b2になる。
AD=DE=EB, AF=FG=GCなので
△ADFと△AEGと△ABCが相似な三角形である。
△ADF∽△AEGの相似比は1:2
よって面積比は1:4
△AEG∽△ABCの相似比は2:3
よって面積比は4:9
四角形DEGFは△AEG-△ADFなので4-1=3
四角形EBCGは△ABC-△AEGなので9-4=5
よって△ADF:四角形DEGF:四角形EBCG=1:3:5
四角形DEGF=24とすると
△ADF=xとすると1:3=x:24
x=8
四角形EBCG=yとすると 3:5=24:y
y=40