top>>数学の問題プリント >>式による説明3
Mathematics Website
menu

式による説明3

次の問に答えなさい

偶数と奇数の和は奇数になることを説明せよ。

3けたの自然数から、各位の数の和を引くと9の倍数になることを説明せよ。

7で割ると3余る数と、7で割ると4余る数との和は7の倍数になることを説明せよ。

2けたの自然数がある。この自然数の十の位の数と一の位の数を入れ替えた自然数を5倍した数と、もとの自然数との和をPとする。 Pが3の倍数になることを説明せよ。


整数をn,mとする。偶数は2n, 奇数は2m−1と表せる。
これらの和は 2n+2m−1 = 2(n+m)−1
n, mが整数なので(n+m)も整数となり、2(n+m)−1は奇数である。
よって偶数と奇数の和は奇数となる。

百の位をx, 十の位をy, 一の位をzとすると
3けたの自然数は100x+10y+zである。
また各位の数の和は x+y+zとなる。
その差は
(100x+10y+z)−(x+y+z)= 99x+9y =9(11x+y)
x,yが整数なので(11x+y)も整数となり、9(11x+y)は9の倍数である。
よって3けたの自然数から、各位の数の和を引くと9の倍数になる

整数をnとすると7で割ると3余る数は7n+3となる。
整数をmとすると7で割ると4余る数は7m+4となる。
これらの和は
(7n+3)+(7m+4)=7n+7m+7 =7(n+m+1)
n, mが整数なので(n+m+1)も整数となり、7(n+m+1)は7の倍数である。
よって7で割ると3余る数と、7で割ると4余る数との和は7の倍数になる

十の位の数をx, 一の位の数をyとする。
2けたの自然数は10x+yとなり、
十の位の数と一の位の数を入れ替えた数は10y+xとなる。
すると
P=(10x+y)+5(10y+x) =15x+51y =3(5x+17y)
x, yが整数なので(5x+17y)も整数となり3(5x+17y)は3の倍数である。
よってPは3の倍数となる。

分野別 目次

1年

正負の数

文字式

方程式

関数

平面図形

空間図形

資料の整理

まとめ

まとめ

2年

式の計算

連立方程式

1次関数

角度

三角形

四角形

確率

3年

多項式

平方根

2次方程式

関数

相似

三平方の定理

まとめ

Topサイトマップ更新履歴このサイトについて
Copyright (C) 2006-2017 SyuwaGakuin All Rights Reserved