放物線mは y= 1 4 x2 のグラフで、放物線nはy=x2のグラフである。放物線m上にありx座標が-4の点をAとする。放物線n上の0<xの部分に点Pをとり、直線APがy軸と交わる点をBとする。△ABOと△PBOの面積が等しくなるときの△AOPの面積を求めよ。
放物線mはy=x2のグラフで、放物線nは y= - 1 4 x2 のグラフである。直線y=-1と放物線nの交点をA,Bとする。放物線m上の0<xの部分に点Pをとり、△PAB=18になるときのPの座標を求めよ。
放物線mは y= - 1 4 x2 のグラフで、放物線nはy=-x2のグラフである。放物線mと直線y=-1との交点をA,Dとし、放物線nと直線y=-9との交点をB,Cとする。点Aを通り台形ABCDの面積を2等分する直線の式を求めよ。
放物線m上に点A(4,8)がある。点Aからy軸、x軸にそれぞれ垂線を引き、交点をB,Cとする。放物線m上に点Pをとり、△ABP:△ACP=7:6となるときの点Pの座標を求めよ。ただし、Pのx座標は0<x<4とする。
解説ページに解説がない問題で、解説をご希望の場合はリクエストを送信してください。 解説リクエスト
関数 例題
変化の割合(基本例題)変化の割合(文字を求める問題) 変域1(基礎) 変域2 変域3(変域から放物線の式を出す) 変域4(放物線と直線の変域が一致) 放物線と直線1 交点を出す 放物線と直線2 変化の割合から式を出す 放物線と直線3 点から式を出す放物線と図形 正方形放物線と図形 三角形の面積動点斜面関数 練習問題
2乗に比例する関数 基礎1 2乗に比例する関数 基礎22乗に比例する関数 基礎3 y=ax2のグラフ1 y=ax2のグラフ2 y=ax2のグラフ3 2乗に比例する関数 変化の割合Lv1 2乗に比例する関数 変化の割合Lv2 2乗に比例する関数 変化の割合Lv3 2乗に比例する関数 変域1 2乗に比例する関数 変域2 2乗に比例する関数 変域3 放物線と直線の変域が一致する1 放物線と直線の変域が一致する2 放物線と直線の変域が一致する3 放物線と直線の変域が一致する4 放物線と直線の変域が一致する5 放物線と直線の変域が一致する6 放物線と直線の変域が一致する7 放物線と直線の変域が一致する8 放物線と直線の変域が一致するLv2 放物線と直線 放物線と図形 放物線と図形2 放物線と面積 2乗に比例する関数 総合問題1 2乗に比例する関数 総合問題2 2乗に比例する関数 総合問題3 2乗に比例する関数 総合問題4
40
(22, 8)
y=-2x-5
(
2
3
,
2
9
)
学習 コンテンツ
学習アプリ
中1 計算問題アプリ 正負の数
中1数学の正負の数の計算問題 加法減法乗法除法、累乗、四則計算