グラフ上の点
y = 2x - 2 のグラフ上の点を表すには、 x座標をpとして式に代入し y=2p-2
座標は (p, 2p-2)となる。
lはy=2x-2のグラフ、 mはy=-x+16のグラフである。
l上に点A,m上に点D,x軸上に点B, Cがある。
四角形ABCDが正方形になる時のAの座標を求めよ。
正方形はすべての辺の長さが等しい。
点Aのx座標をpとすると y = 2p -2
A(p, 2p -2)と表せる。
ABCDが正方形になるのでAB = CD つまりAのy座標とDのy座標は同じになる。
y = 2p -2をmの式に代入すると 2p -2 = -x +16
xについて解くと x = -2p +18
D(-2p+18, 2p-2)となる。
さらに正方形であることから、AB = ADである。
ABはAのy座標と同じなので AB = 2p-2
ADはDのx座標からAのx座標を引けば出るので
AD = -2p + 18 -p = -3p+18
AB = ADに代入すると
2p -2 = -3p +18
5p = 20
p =4
よって A(4, 6)
【練習】
lはy=2x+2のグラフ、 mはy=-x+9のグラフである。
l上に点A,m上に点D,x軸上に点B, Cがある。
四角形ABCDが正方形になる時のAの座標を求めよ。
答(1, 4)
【参考】 直線と四角形
1次関数 例題
1次関数とは1次関数 傾きと切片からグラフをかく1次関数xの増加量、yの増加量変化の割合傾きと1点から1次関数の式を出す2点から1次関数の式を出す1次関数変域 xの変域が片側だけ1次関数変域 a, bの値を求める1次関数変域 切片とyの最大値(最小値)を出す1次関数変域 傾きとyの最大値(最小値)を出す1次関数変域 傾きとyの最大値(最小値)を出す2平行なグラフ2直線の交点の座標3直線が1点で交わる3点が一直線上に並ぶ関数と図形 線分の長さ関数と図形 三角形の面積2点の座標から中点を求める三角形の面積を二等分する直線1(頂点を通る)三角形の面積を二等分する直線2(頂点を通らない)関数と図形 平行四辺形の面積を2等分する直線関数と図形 正方形 関数と図形 面積が等しい三角形動点 ダイヤグラム ダイヤグラム2 ダイヤグラム3(道のりの差)1次関数 練習問題
1次関数基礎1 1次関数基礎2 1次関数基礎3 1次関数_変化の割合1 1次関数_変化の割合2 1次関数_変化の割合3 1次関数のグラフ1 1次関数のグラフ2 1次関数のグラフ3 1次関数のグラフ4 1次関数の式の出し方 1次関数の式2 1次関数の式3 1次関数の変域1 1次関数の変域2 1次関数の変域3 直線の式とグラフの交点 直線の式 平行・交点 直線の式 平行・交点2 1次関数基礎まとめ関数と図形 関数と図形2 直線と四角形 1次関数応用(動点) 動点2 ダイヤグラム1 ダイヤグラム2 動点3(発展) 関数と図形(面積を二等分する直線) 関数と図形(面積を二等分する直線2) 1次関数まとめ2 1次関数まとめ3 1次関数総合問題lv.1 1次関数総合問題lv.2 1次関数総合問題lv.3