Mathematics Website

2点から1次関数の式を出す

【例題】2点から1次関数の式を出す

2点から1次関数の式を出す方法は2通り。
① 変化の割合を出し、傾きと1点から式を出す。
② x,yをそれぞれy=ax+bに代入して連立方程式にしてa,bを出す
どちらの方法でも1次関数の式が出せる。

【例題】 x=2のときy=7で、x=4のときy=11となるような1次関数の式を求めよ。 2点(2,9) (4,7)を通る直線の式を求めよ。 切片が3で点(-2, 11)を通る直線の式を求めよ。 点(1,6)を通り、直線y=-x+3とx軸上で交わる直線の式を求めよ。 まず2点から変化の割合を出す。
変化の割合 = 11-7 4-2=2
y = 2x+ bに x=2, y=7を代入
7=2×2+b
-b=4-7
-b~-3
b=3
よって1次関数の式は y=2x+3


変化の割合 = 7-9 4-2=-1
y=-x+bにx=2, y=9を代入
9=-2+b
-b=-2-9
-b=-11
b=11
よって1次関数の式は y=-x+11


切片3は(0,3)なので
変化の割合 = 3-11 0-(-2)=-4
よってy=-4x+3


直線y=-x+3とx軸との交点はy=0を代入して
0=-x+3
x=3よって(3,0)
(3,0)と(1,6)から変化の割合=0-6 3-1=-3
y=-3x+bにx=3, y=0を代入すると
0=-3×3+b
-b=-9
b=9
よってy=-3x+9


【別解】 y=ax+bに(x,y)の組をそれぞれ代入して
連立方程式にしてa,bを出す。

y=ax+bにx=2, y=7を代入すると 7=2a+b
y=ax+bにx=4, y=11を代入すると11=4a+b
2a+b=7 4a+b=11
これを解くとa=2, b=3
よってy=2x+3


y=ax+bに(2,9)を代入すると 9=2a+b
y=ax+bに(4,7)を代入すると 7=4a+b
9=2a+b 7=4a+b これを解くとa=-1, b=11よって
y = -x+11


切片3なので y=ax+3 これに(-2, 11)を代入すると
11 = -2a+3
2a=-8
a=-4
よってy=-4x+3


直線y=-x+3とx軸との交点はy=0を代入して
0=-x+3
x=3よって(3,0)
y=ax+bに(3,0)を代入すると 0 = 3a+b
y=ax+bに(1,6)を代入すると 6 = a+b
0=3a+b 6=a+b これを解くと a=-3,b=9
よって y=-3x+9

【練習】
x=-2のときy=17で、x=1のときy=-1となるような1次関数の式を求めよ。
y=-6x+5
2点(-12,2) (4,10)を通る直線の式を求めよ。
y=12x+8
切片が-2で点(6, 10)を通る直線の式を求めよ。
y=2x-2
点(6,8)を通り、直線y=-3x+12とx軸上で交わる直線の式を求めよ。
y=4x-16

学習 コンテンツ

練習問題 各単元の要点 pcスマホ問題 数学の例題

学習アプリ

中2 連立方程式 計算問題アプリ
連立の計算問題 基礎から標準問題までの練習問題と、例題による解き方の説明

© 2006- 2021 SyuwaGakuin All Rights Reserved